Respuesta :

Answer:

The probability is 0.357

Step-by-step explanation:

Given that,

The system has at least one type of defect,

Suppose, A certain system can experience three different types of defects.

Let [tex]A_{i}[/tex] (i = 1,2,3) denote the event that the system has a defect of type i.

Suppose that the following probabilities are,

[tex]P(A_{1})=0.11[/tex]

[tex]P(A_{2})=0.08[/tex]

[tex]P(A_{3})=0.05[/tex]

[tex]P(A_{1}\cup A_{2})=0.13[/tex]

[tex]P(A_{1}\cup A_{3})=0.13[/tex]

[tex]P(A_{2}\cup A_{3})=0.11[/tex]

[tex]P(A_{1}\cap A_{2}\cap A_{3})=0.01[/tex]

[tex]P(A_{1}\cap A_{2})=0.06[/tex]

[tex]P(A_{1}\cap A_{3})=0.03[/tex]

[tex]P(A_{2}\cap A_{3})=0.02[/tex]

[tex]P(A_{1}\cup A_{2}\cup A_{3})=0.14[/tex]

We need to calculate the probability that it has exactly one type of defect

Using given data

[tex]P=\dfrac{P(A_{1}\cap A_{2}'\cap A_{3}')}{P(A_{1}\cup A_{2}\cup A_{3})}+\dfrac{P(A_{1}'\cap A_{2}\cap A_{3}')}{P(A_{1}\cup A_{2}\cup A_{3})}+\dfrac{P(A_{1}'\cap A_{2}'\cap A_{3})}{P(A_{1}\cup A_{2}\cup A_{3})}[/tex]

[tex]P=\dfrac{P(A_{1})-P(A_{1}\cap A_{2})-P(A_{1}\cap A_{3})+P(A_{1}\cap A_{2}\cap A_{3})}{P(A_{1}\cup A_{2}\cup A_{3})}[/tex] + [tex]\dfrac{P(A_{2})-P(A_{1}\cap A_{2})-P(A_{2}\cap A_{3})+P(A_{1}\cap A_{2}\cap A_{3})}{P(A_{1}\cup A_{2}\cup A_{3})}[/tex]+ [tex]\dfrac{P(A_{3})-P(A_{1}\cap A_{3})-P(A_{2}\cap A_{3})+P(A_{1}\cap A_{2}\cap A_{3})}{P(A_{1}\cup A_{2}\cup A_{3})}[/tex]

P = [tex]\dfrac{P(A_{1})+P(A_{2})+P(A_{3})-2P(A_{1}\cap A_{2})-2P(A_{1}\cap A_{3})-2P(A_{2}\cap A_{3})+3P(A_{1}\cap A_{2}\cap A_{3})}{P(A_{1}\cup A_{2}\cup A_{3})}[/tex]

Put the value into the formula

[tex]P=\dfrac{0.11+0.08+0.05-2(0.06)-2(0.03)-2(0.02)+3(0.01)}{0.14}[/tex]

[tex]P=0.357[/tex]

Hence, The probability is 0.357