Answer:
[tex]g = \sqrt{\frac{S}{3kr^{-5}}}[/tex]
Step-by-step explanation:
Given
[tex]S=gr^{-5}gk*3[/tex]
Required
Solve for g
[tex]S=gr^{-5}gk*3[/tex]
Split into different entities
[tex]S=g * r^{-5}*g*k*3[/tex]
Reorder in terms of like terms
[tex]S=g*g * r^{-5}*k*3[/tex]
[tex]S=g^2 * r^{-5}*k*3[/tex]
[tex]S=g^2 * 3kr^{-5}[/tex]
Solve for [tex]g^2[/tex]
[tex]g^2 = \frac{S}{3kr^{-5}}[/tex]
Take square root of both sides
[tex]g = \sqrt{\frac{S}{3kr^{-5}}}[/tex]