Solve the system of equations by transforming a matrix representing the system of equation into reduced row echelon form.


x+3y−3z=−27
2x+y+z=−2
x−y+3z=17


What is the solution to the system of equations?


Drag a choice into each box to correctly complete the table.

Respuesta :

Gyzmo

Answer:

x = -3

y = -2

z = 6

or

(-3, -2, 6)

Step-by-step explanation:

So first, lets construct our matrix:

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\2&1&1&-2\\1&-1&3&17\end{array}\right][/tex]

Now lets get it into reduced row echelon form. R₂ ⇒ -2R₁ + R₂

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&-5&7&52\\1&-1&3&17\end{array}\right][/tex]

R₃ ⇒ -R₁ + R₃

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&-5&7&52\\0&-4&6&44\end{array}\right][/tex]

R₂ ⇒ -1/5R₂

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&1&-\frac{7}{5}&-\frac{52}{5}\\0&-4&6&44\end{array}\right][/tex]

R₃ ⇒ 4R₂ + R₃

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&1&-\frac{7}{5}&-\frac{52}{5}\\0&0&\frac{2}{5}&\frac{12}{5}\end{array}\right][/tex]

R₃ ⇒ 5/2R₃

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&1&-\frac{7}{5}&-\frac{52}{5}\\0&0&1&6\end{array}\right][/tex]

R₂ ⇒ 7/5R₃ + R₂

[tex]\left[\begin{array}{ccc|c}1&3&-3&-27\\0&1&0&-2\\0&0&1&6\end{array}\right][/tex]

R₁ ⇒ 3R₃ + R₁

[tex]\left[\begin{array}{ccc|c}1&3&0&-9\\0&1&0&-2\\0&0&1&6\end{array}\right][/tex]

R₁ ⇒ -3R₂ + R₁

[tex]\left[\begin{array}{ccc|c}1&0&0&-3\\0&1&0&-2\\0&0&1&6\end{array}\right][/tex]

And now we have our matrix in reduced row echelon form. The solution to the system of equations would be:

x = -3

y = -2

z = 6

(-3, -2, 6)

I hope you find my answer and explanation to be helpful. Happy studying.