Simplify this expression.

Answer
[tex] \frac{ 6 {y}^{4} {w}^{2} }{{x}} [/tex]
Step-by-step Explanation
[tex] \huge \frac{12 {x}^{3} {y}^{6} {w}^{5} }{ 2{x}^{4} {y}^{2} {w}^{3} } \\ \\ \huge= \frac{6 {x}^{3} {y}^{6} {w}^{5} }{{x}^{4} {y}^{2} {w}^{3} } \\ \\ \huge = 6 {x}^{3 - 4} {y}^{6 - 2} {w}^{5 - 3} \\ \\ \huge= 6 {x}^{ - 1} {y}^{4} {w}^{2} \\ \\ \huge = \frac{ 6 {y}^{4} {w}^{2} }{{x}^{1}} \\ \\ \huge = \frac{ 6 {y}^{4} {w}^{2} }{{x}} [/tex]
Answer:
[tex]\frac{6w^2 y^4}{x}[/tex]
Step-by-step explanation:
[tex]\frac{12x^3 y^6 w^5}{2x^4 y^2 w^3}[/tex]
[tex]= \frac{12w^5 x^3 y^6}{2w^3 x^4 y^2}[/tex]
[tex]= \frac{12w^2 y^4}{2x}[/tex]
[tex]= \frac{6w^2 y^4}{x}[/tex]
Hope this helped you!