Respuesta :

Answer:

CD ≠ EF

Step-by-step explanation:

Using the distance formula

d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

with (x₁, y₁ ) = C(- 2, 5) and (x₂, y₂ ) = D(- 1, 1)

CD = [tex]\sqrt{(-1+2)^2+(1-5)^2}[/tex]

      = [tex]\sqrt{1^2+(-4)^2}[/tex]

      = [tex]\sqrt{1+16}[/tex] = [tex]\sqrt{17}[/tex]

Repeat using (x₁, y₁ ) = E(- 4, - 3) and (x₂, y₂ ) = F(- 1, - 1)

EF = [tex]\sqrt{(- 1+4)^2+(-1+3)^2}[/tex]

     = [tex]\sqrt{3^2+2^2}[/tex]

     = [tex]\sqrt{9+4}[/tex] = [tex]\sqrt{13}[/tex]

Since [tex]\sqrt{17}[/tex] ≈ [tex]\sqrt{13}[/tex] , then CD and EF are not congruent