Find x and m 2 ZXY.
(2x + 10)
(3x – 18)

Answer:
x = 28
66°
Step-by-step explanation:
[tex] \because \overrightarrow{XZ} [/tex] is the bisector of [tex] \angle WXY[/tex]
[tex] \therefore m\angle WXZ = m\angle ZXY\\
\therefore (2x + 10)\degree = (3x - 18)\degree \\
\therefore 2x + 10 = 3x - 18\\
\therefore 2x - 3x = - 18 - 10\\
\therefore - x = - 28\\
\huge \purple {\boxed {\therefore x = 28}} \\\\
\because m\angle ZXY= (3x - 18)\degree\\
\therefore m\angle ZXY= (3\times 28- 18)\degree\\
\therefore m\angle ZXY= (84- 18)\degree\\
\huge \orange {\boxed {\therefore m\angle ZXY=66\degree}} \\[/tex]