Answer:
[tex]5\sqrt{5}[/tex]
Step-by-step explanation:
The distance formula states that [tex]D(x_{1} ,y_{1})(x_{2},y_{2} )=\sqrt{(x_{2} } -x_{1} )^2+(y_{2}-y_{1} )^2\\[/tex]
We plug in our points, (6,0) and (-4,5), and compute.
[tex]\sqrt{(-4-6)^2+(5-0)^2} \\\sqrt{(-10)^2+5^2} \\\sqrt{100+25} \\\sqrt{125} \\5\sqrt{5}[/tex] (Make sure you see why I put parentheses around the -10 in (-10)^2. -x^2 and (-x)^2 are not the same) (Also here is why the simplification of the radical works)
[tex]\sqrt{125} =\sqrt{5^2*5} =\sqrt{5^2} *\sqrt{5} =5*\sqrt{5} =5\sqrt{5}[/tex]
The * stands for multiplication.