Respuesta :

You could use the following identities in verifying the trigonometric expression sinx cosx tanx=1-cos^2x:

tanx = sinx/cosx
sin^2x+cos^2x = 1

When those identities are used, you could now verify the equation.

Hope that helps you.

Answer:

[tex]sin^2x+cos^2x=1[/tex] is used to prove the given equation.

Step-by-step explanation:

We have given an equation:

[tex]sinx\cdot cosx\cdot tanx=1-cos^2x[/tex]

We will consider right hand side first

tan x can be written as:

[tex]tanx=\frac{sinx}{cosx}[/tex]

So, on substituting tan x in the left hand side of the given equation we get:

[tex]sinx\cdot cosx\cdot \frac{sinx}{cosx}[/tex]

Cancel common term from denominator and numerator which is cosx we get

[tex]sin^2x[/tex]

And we have an identity:

[tex]sin^2x+cos^2x=1[/tex]

[tex]\Rightarrow sin^2x=1-cos^2x[/tex]

Hence, right hand side is equal to [tex]sin^2x[/tex].