Respuesta :

[tex]\boxed{{\text{3}}{\text{.25}}\times{\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ ions}}}[/tex]  are present in 30 mL of 0.600 M [tex]{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}[/tex]  solution.

Further Explanation:

The proportion of substance in the mixture is called concentration. The most commonly used concentration terms are as follows:

1. Molarity (M)

2. Molality (m)

3. Mole fraction (X)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.

The formula to calculate the molarity of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]] solution is as follows:

[tex]{\text{Molarity of N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ solution}}=\frac{{{\text{Moles}}\;{\text{of}}\;{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}}}{{{\text{Volume }}\left({\text{L}}\right){\text{ of}}\;{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ solution}}}}[/tex]       …… (1)

Rearrange equation (1) to calculate the moles of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]  solution.

[tex]\begin{aligned}{\text{Moles}}\;{\text{of}}\;{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}=\left({{\text{Molarity of  N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ solution}}}\right)\\\left({{\text{Volume of}}\;{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ solution}}}\right)\\\end{aligned}[/tex]                                          …… (2)

The molarity of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]  solution is 0.600 M.

The volume of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]  solution is 30 mL.

Substitute these values in equation (2).

[tex]\begin{aligned}{\text{Moles}}\;{\text{of}}\;{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}&=\left({{\text{0}}{\text{.600 M}}}\right)\left({{\text{30 mL}}}\right)\left({\frac{{{{10}^{ - 3}}{\text{ L}}}}{{{\text{1 mL}}}}}\right)\\&=0.01{\text{8 mol}}\\\end{aligned}[/tex]

The dissociation of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]  occurs as follows:

[tex]{\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}\rightleftharpoons 2{\text{N}}{{\text{a}}^ + } + {\text{CO}}_3^{2 - }[/tex]

This indicates that one mole of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex]  dissociates to form two moles of [tex]{\text{N}}{{\text{a}}^ + }[/tex]  ions and one mole of [tex]{\text{CO}}_3^{2 - }[/tex]   ion. So total of three moles of ions are produced by one mole of [tex]{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}[/tex] .

The total number of moles of ions produced during the reaction is calculated as follows:

[tex]\begin{aligned}{\text{Moles of ions}}&=\left({{\text{0}}{\text{.018 mol}}}\right)\left({\text{3}} \right)\\&=0.0{\text{54 mol}}\\\end{aligned}[/tex]

The formula to calculate the number of ions is as follows:

[tex]{\text{Number of ions}}=\left({{\text{Moles of ions}}}\right)\left({{\text{Avogadro's Number}}}\right)[/tex]                         …… (3)

The number of moles of ions is 0.054 mol.

The value of Avogadro’s number is [tex]{\text{6}}{\text{.022}}\times{\text{1}}{{\text{0}}^{{\text{23}}}}\;{\text{ions}}[/tex] .

Substitute these values in equation (3).

[tex]\begin{aligned}{\text{Number of ions}}{\mathbf{ &= }}\left({0.054{\text{ mol}}}\right)\left( {\frac{{{\text{6}}{\text{.022}}\times{\text{1}}{{\text{0}}^{{\text{23}}}}{\text{ ions}}}}{{{\text{1 mol}}}}} \right)\\&={\text{3}}{\text{.25188}}\times{\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ ions}}\\&\approx {\text{3}}{\text{.25}}\times{\text{1}}{{\text{0}}^{{\text{22}}}}{\text{ ions}}\\\end{aligned}[/tex]

Learn more:

1. The mass of ethylene glycol: https://brainly.com/question/4053884

2. Calculate the moles of ions in HCl solution: https://brainly.com/question/5950133

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: molarity, ions, moles, Na2CO3, Na+, CO32-, 2Na+, 0.018 mol, 0.054 mol, Avogadro’s number, 3.25*10^22 ions, volume of Na2CO3, moles of Na2CO3.

The total number of ions present in 30.0 mL of 0.600M Na₂CO₃ solution is 3.25×10²² ions

We'll begin by calculating the number of mole of Na₂CO₃ in the solution. This can be obtained as follow:

Volume = 30 mL = 30 / 1000 = 0.03 L

Molarity = 0.6 M

Mole of Na₂CO₃ =?

Mole = Molarity x Volume

Mole of Na₂CO₃ = 0.6 × 0.03

Mole of Na₂CO₃ = 0.018 mole

  • Next, we shall determine the total number of mole of ions in the solution.

Na₂CO₃(aq) —> 2Na⁺(aq) + CO₃²¯(aq)

From the balanced equation above,

1 mole of Na₂CO₃ contains 2 mole of Na⁺ and 1 mole of CO₃²¯.

Therefore,

0.018 mole of Na₂CO₃ will contain:

  • 2 × 0.018 = 0.036 mole of Na⁺
  • 0.018 mole of CO₃²¯

Mole of Na⁺ = 0.036 mole

Mole of CO₃²¯ = 0.018 mole

Total mole = 0.036 + 0.018

Total mole = 0.054 mole

  • Finally, we shall determine the number of ions in the solution. This can be obtained as follow:

From Avogadro's hypothesis

1 mole = 6.02×10²³ ions

Therefore,

0.054 mole = 0.054 × 6.02×10²³

0.054 mole = 3.25×10²² ions

Therefore, the total number of ions present in the solution is 3.25×10²² ions

Learn more: https://brainly.com/question/14575471