What is a polynomial function in standard form with zeroes 1, 2, –3, and –3?
A. g(x) = x4 + 3x3 –7x2 – 15x + 18
B. g(x) = x4 + 3x3 –7x2 + 2x + 18
C. g(x) = x4 – 3x3 + 7x2 + 15x + 18
D. g(x) = x4 – 3x3 –7x2 + 15x + 18

Respuesta :

caylus
Hello,

(x-1)(x-2)(x+3)²=(x²-3x+2)(x²+6x+9)
=x^4+3x^3-7x²-15x+18

Answer A
The zeroes are 1, 2, -3 and -3

we can make the zeroes into factors of 
(x-1), (x-2), (x+3)  and (x-3)

Multiply all the factors in order to get the polynomial function

g(x) = (x-1)(x-2)(x+3)(x-3)
g(x) = x4 + 3x3 –7x2 – 15x + 18

So the correct answer is letter 
A. g(x) = x4 + 3x3 –7x2 – 15x + 18