Respuesta :
choices....
a. csc = 15/12 sec = 15/9
b. csc = 15/12 sec = 12/15
c. csc = 9/15 sec = 12/15
d. csc = 9/12 sec = 9/15
a = 9 ; b = 12 ; c = ?
Pythagorean theorem: a² + b² = c²
9² + 12² = c²
81 + 144 = c²
225 = c²
√225 = √c²
15 = c
CSC = cosecant function = hypotenuse/opposite = 15/12
SEC = secant function = hypotenuse/adjacent = 15/9
Choice A: csc = 15/12 sec = 15/9
a. csc = 15/12 sec = 15/9
b. csc = 15/12 sec = 12/15
c. csc = 9/15 sec = 12/15
d. csc = 9/12 sec = 9/15
a = 9 ; b = 12 ; c = ?
Pythagorean theorem: a² + b² = c²
9² + 12² = c²
81 + 144 = c²
225 = c²
√225 = √c²
15 = c
CSC = cosecant function = hypotenuse/opposite = 15/12
SEC = secant function = hypotenuse/adjacent = 15/9
Choice A: csc = 15/12 sec = 15/9
Answer:
[tex]cosec{\theta}=\frac{15}{12}[/tex] and [tex]sec{\theta}=\frac{15}{9}[/tex]
Step-by-step explanation:
For the standard position triangle having sides of x=9 and y=12 and the included theta, the hypotenuse can be calculated through the Pythagorean theorem such as:
[tex](AC)^2=(AB)^2+(BC)^2[/tex]
[tex](AC)^2=144+81[/tex]
[tex](AC)^2=225[/tex]
[tex]AC=15[/tex]
Therefore, the value of AC(Hypotenuse) is 13 units.
Now, [tex]cosec{\theta}=\frac{AC}{AB}[/tex]
[tex]cosec{\theta}=\frac{15}{12}[/tex]
and [tex]sec{\theta}=\frac{AC}{BC}[/tex]
[tex]sec{\theta}=\frac{15}{9}[/tex]
which are the required values of [tex]cosec{\theta}[/tex] and [tex]sec{\theta}[/tex].
