Respuesta :
Answer:
[tex]3sec^2(3x)[/tex] is the answer.
Step-by-step explanation:
[tex]\lim_{h\to0 \ \frac{tan(3(x+h)-tan(3x)}{h}[/tex]
[tex]\ \lim_{h\to 0\ \frac{ \frac{sin3(x+h)}{cos3(x+h)}- \frac{sin3x}{cos3x} }{h}[/tex][tex]\lim_{h \to0 \frac{ {sin3(x+h) cos3x}{}- {sin3x}cos3(x+h){} }{ h cos3(x+h) cos3x}[/tex]
[tex]\lim_{h \to0 \frac{sin3x+3h-3x}{h cos3(x+h) cos3x }[/tex]
[tex]3 \lim_{h \to0 \} \frac{sin3h}{3h cos3(x+h) cos3x} \\plugging the limit h =0 ,we get \\[/tex]
[tex]3sec^2(3x)[/tex]
We want to solve the differential quotient:
[tex]\lim_{h \to 0} \frac{tan(3*(x + h)) - tan(3x)}{h}[/tex]
The solution is:
[tex]3*sec(3x)^2[/tex]
We start by expanding the first term in the numerator.
[tex]\lim_{h \to 0} \frac{tan(3*x + 3*h) - tan(3x)}{h}[/tex]
We can use the rule:
[tex]Tan(3x + 3h) = \frac{tan(3x) + tan(3h)}{1 - tan(3x)*tan(3h)}[/tex]
And replace that in the numerator, so we get:
[tex]\lim_{h \to 0} \frac{\frac{tan(3x) + tan(3h)}{1 - tan(3x)*tan(3h)} - tan(3x)}{h}\\\\\lim_{h \to 0} \frac{\tan(3x) + tan(3h) - tan(3x)*(1 - tan(3x)*tan(3h))}{h*(1 - tan(3x)*tan(3h))}\\\\\lim_{h \to 0} \frac{ tan(3h) - tan(3x)^2*tan(3h)}{h*(1 - tan(3x)*tan(3h))}\\\\\lim_{h \to 0} \frac{ tan(3h)*(1 - tan(3x)^2)}{h*(1 - tan(3x)*tan(3h))}[/tex]
And we know that:
[tex](1 - tan(3x)^2) = sec(3x)^2[/tex]
Then we got:
[tex]lim_{h \to 0} \frac{ tan(3h)*sec(3x)^2}{h*(1 - tan(3x)*tan(3h))}[/tex]
Now we can rewrite the tangent of 3h as the quotient of a sine and cosine:
[tex]lim_{h \to 0} \frac{ sin(3h)*sec(3x)^2}{h*(1 - tan(3x)*tan(3h))*cos(3h)}[/tex]
And near zero, we have that:
sin(x) = x
Then knowing that we will take a limit, we can rewrite:
[tex]lim_{h \to 0} \frac{ 3*h*sec(3x)^2}{h*(1 - tan(3x)*tan(3h))*cos(3h)}\\\\lim_{h \to 0} \frac{ 3*sec(3x)^2}{(1 - tan(3x)*tan(3h))*cos(3h)}[/tex]
Now we just take the limit, cos(3*0) = 1 and tan(3*0) = 0, then we get:
[tex]lim_{h \to 0} \frac{ 3*sec(3x)^2}{(1 - tan(3x)*tan(3h))*cos(3h)} = 3*sec(3x)^2[/tex]
If you want to learn more, you can read:
https://brainly.com/question/20433457