Respuesta :

4c2-9d2 Final result : (2c + 3d) • (2c - 3d) Step by step solution :Step  1  :Skip Ad
Equation at the end of step  1  : (4 • (c2)) - 32d2 Step  2  :Equation at the end of step  2  : 22c2 - 32d2 Step  3  :Trying to factor as a Difference of Squares : 

 3.1      Factoring:  4c2-9d2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 = 
         A2 - B2

Note :  AB = BA is the commutative property of multiplication. 

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  4  is the square of   2 
Check : 9 is the square of 3
Check :  c2  is the square of   c1 

Check :  d2  is the square of   d1 

Factorization is :       (2c + 3d)  •  (2c - 3d) 

Final result : (2c + 3d) • (2c - 3d)

Processing ends successfully