Respuesta :

Answer:

To get 2 imaginary solutions, c must be less than -2

Step-by-step explanation:

The general form of the quadratic equation is:

[tex]ax^2+bx+c=0[/tex]

Solve the quadratic equation by using the formula:

[tex]\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

The equation to solve is:

[tex]-2x^2+4x+c=0[/tex]

In our equation: a=-2, b=4, c=unknown

For the roots to be imaginary, the argument of the square root must be negative, that is:

[tex]b^2-4ac<0[/tex]

Substituting the known values:

[tex]4^2-4(-2)c<0[/tex]

[tex]16+8c<0[/tex]

Subtracting 16:

[tex]8c<-16[/tex]

Solving:

[tex]c<-2[/tex]

Thus, to get 2 imaginary solutions, c must be less than -2