LaTeX: Create\:an\:equation\:in\:slope\:intercept\:form\:that\:is\:parallel\:to\:y\:=\frac{\:1}{3}x\:+\:4\:and\:goes\:through\:the\:point\:\left(-3,\:1\right).C r e a t e a n e q u a t i o n i n s l o p e i n t e r c e p t f o r m t h a t i s p a r a l l e l t o y = 1 3 x + 4 a n d g o e s t h r o u g h t h e p o i n t ( − 3 , 1 ) .


Group of answer choices


LaTeX: y=\frac{1}{3}x+2 y = 1 3 x + 2 y = 1 3 x + 2 y = 1 3 x + 2


LaTeX: y\:=\:-3x\:+\:4 y = − 3 x + 4 y = − 3 x + 4 y = − 3 x + 4


LaTeX: y=\frac{1}{3}x y = 1 3 x y = 1 3 x y = 1 3 x


LaTeX: y=-3x-8

Respuesta :

Answer:

[tex]y = \frac{1}{3}x +2[/tex]

Step-by-step explanation:

Given

Equation:

[tex]y = \frac{1}{3}x + 4[/tex]

[tex]Point: (-3,1)[/tex]

Required

Determine the equation of the point parallel to the given equation

First, we need to determine the slope of: [tex]y = \frac{1}{3}x + 4[/tex] using

[tex]y = mx + b[/tex]

Where m represents slope.

By comparison

[tex]m = \frac{1}{3}[/tex]

The equation of the point is calculated as thus:

[tex]y - y_1 = m(x - x_1)[/tex]

Where [tex](x_1,y_1) = (-3,1)[/tex]

So, we have:

[tex]y - y_1 = m(x - x_1)[/tex]

[tex]y - 1 = \frac{1}{3}(x - (-3))[/tex]

[tex]y - 1 = \frac{1}{3}(x +3)[/tex]

[tex]y - 1 = \frac{1}{3}x +1[/tex]

Solve for y

[tex]y = \frac{1}{3}x +1 +1[/tex]

[tex]y = \frac{1}{3}x +2[/tex]