Answer:
Expectation is equal to 4.75
Variance is equal to 3.02
Step-by-step explanation:
Consider the attached image.
Let [tex]x_i[/tex] denotes each of the outcome.
Expectation [tex]=E(X)[/tex] = ∑[tex]x_if(x_i)[/tex]
[tex]=1(\frac{1}{12}) +2(\frac{1}{12}) +3(\frac{1}{12}) +4(\frac{1}{12}) +5(\frac{1}{12}) +6(\frac{7}{12})[/tex]
[tex]=\frac{1}{12}+\frac{2}{12}+\frac{3}{12}+\frac{4}{12}+\frac{5}{12}+\frac{42}{12}\\\\=\frac{57}{12}\\\\=4.75[/tex]
[tex]E(X^2)=[/tex] ∑ [tex]x_i^2f(x_i)[/tex]
[tex]=1^2(\frac{1}{12}) +2^2(\frac{1}{12}) +3^2(\frac{1}{12}) +4^2(\frac{1}{12}) +5^2(\frac{1}{12}) +6^2(\frac{7}{12})[/tex]
[tex]=(\frac{1}{12}) +4(\frac{1}{12}) +9(\frac{1}{12}) +16(\frac{1}{12}) +25(\frac{1}{12}) +36(\frac{7}{12})\\\\=\frac{307}{12}[/tex]
Variance  [tex]=E(X^2)-[E(X)]^2[/tex]
[tex]=(\frac{307}{12})-(\frac{57}{12})^2\\\\ =\frac{307}{12}-\frac{3249}{144}\\\\ =\frac{3684-3249}{144}\\\\ =\frac{435}{144}\\\\ =3.02[/tex]