Respuesta :
Answer:
a
[tex]P(4.00 < Â X Â < Â 5.00) = Â 0.58818 Â [/tex] Â
b
[tex]P(X \ge 5.5) = 0.02564 [/tex]
c
[tex]P(X < 4 ) = 0.27652[/tex]
Step-by-step explanation:
From the question we are told that
  The mean is  [tex]\mu = 4.35[/tex]
  The standard deviation is  [tex]\sigma =  0.59[/tex]
Generally the probability that the amount of cosmic radiation to which a person will be exposed on such a flight is between 4.00 and 5.00 mrem is mathematically represented as Â
  [tex]P(4.00 <  X  <  5.00) =  P(\frac{ 4 - \mu }{\sigma} <  \frac{X - \mu}{\sigma} <  \frac{ 5 - \mu }{ \sigma}  )[/tex]
Here [tex]\frac{X - \mu}{\sigma} Â = Z Â (The \ Â standardized \ Â value \ Â of \ Â X )[/tex]
=> [tex]P(4.00 < Â X Â < Â 5.00) = Â P(\frac{ 4 - 4.35 }{0.59} < Â Z < Â \frac{ 5 - 4.35 }{ 0.59} Â )[/tex]
=> [tex]P(4.00 < Â X Â < Â 5.00) = Â P(-0.59322 < Â Z < Â 1.1017 Â )[/tex]
=> [tex]P(4.00 < Â X Â < Â 5.00) = Â P( Z < Â 1.1017 Â ) - P(Z < -0.59322) Â [/tex]
From the z -table the probability of  ( Z <  1.1017  ) and  (Z < -0.59322)  are
   [tex]P( Z <  1.1017  ) =0.8647[/tex]
and
   [tex]P( Z <  -0.59322 ) =0.27652[/tex]
So
=> [tex]P(4.00 < Â X Â < Â 5.00) = Â 0.8647 - 0.27652 Â [/tex] Â Â
=> Â [tex]P(4.00 < Â X Â < Â 5.00) = Â 0.58818 Â [/tex] Â Â
Generally the probability that the amount of cosmic radiation to which a person will be exposed on such a flight is  At least 5.50 mrem is mathematically represented as
   [tex]P(X \ge 5.5) = 1- P(X < 5.5)[/tex]
Here
   [tex]P(X < 5.5) =  P(\frac{X - \mu }{\sigma}  <  \frac{5.5 - 4.35}{0.59}  )[/tex]
   [tex]P(X < 5.5) =  P(Z< 1.94915) [/tex]
From the z -table the probability of (Z< 1.94915) is Â
   [tex]P(Z< 1.94915) = 0.97436[/tex]
So
    [tex]P(X \ge 5.5) = 1- 0.97436[/tex]
=> Â Â [tex]P(X \ge 5.5) = 0.02564 [/tex]
Generally the probability that the amount of cosmic radiation to which a person will be exposed on such a flight is less than 4.00 mrem is mathematically represented as
  [tex]P(X < 4) =  P(\frac{X - \mu }{\sigma}  <  \frac{4 - 4.35}{0.59}  )[/tex]
   [tex]P(X < 4) =  P(Z< -0.59322) [/tex]
From the z -table the probability of (Z< 1.94915) is Â
   [tex]P(Z< -0.59322) = 0.27652[/tex]
So
    [tex]P(X < 4 ) = 0.27652[/tex]