Answer:
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
Explanation:
From Dimensional Analysis we understand that [tex]x[/tex] and [tex]y[/tex] have length units ([tex][l][/tex]) and [tex]t[/tex] have time units ([tex][t][/tex]). Then, we get that:
[tex][l] = A\cdot [l]^{3}[/tex] (Eq. 1)
[tex][l] = B\cdot [t][/tex] (Eq. 2)
Now we finally clear each constant:
[tex]A = \frac{[l]}{[l]^{3}}[/tex]
[tex]A = \frac{1}{[l]^{2}}[/tex]
[tex]B = \frac{[l]}{[t]}[/tex]
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.