Suppose 52% of the population has a college degree. If a random sample of size 563563 is selected, what is the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5%5%? Round your answer to four decimal places.

Respuesta :

Answer:

The value is  [tex]P(| \^ p -  p| < 0.05 ) = 0.9822 [/tex]

Step-by-step explanation:

From the question we are told that

    The population proportion is  [tex]p =  0.52[/tex]

     The sample size is  n  =  563      

Generally the population mean of the sampling distribution is mathematically  represented as

           [tex]\mu_{x} =  p =  0.52[/tex]

Generally the standard deviation of the sampling distribution is mathematically  evaluated as

       [tex]\sigma  =  \sqrt{\frac{ p(1- p)}{n} }[/tex]

=>      [tex]\sigma  =  \sqrt{\frac{ 0.52 (1- 0.52 )}{563} }[/tex]

=>      [tex]\sigma  =   0.02106 [/tex]

Generally the  probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

            [tex]P(| \^ p -  p| < 0.05 ) =  P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 ))[/tex]

  Here  [tex]\^ p[/tex] is the sample proportion  of persons with a college degree.

So

 [tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma }  < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )[/tex]

Here  

    [tex]\frac{[\^p - p] - p}{\sigma }  = Z (The\ standardized \  value \  of\  (\^ p - p))[/tex]

=> [tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 }  <  Z  < \frac{-0.47 + 0.52}{0.02106 }][/tex]

=> [tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P[ -2.37 <  Z  < 2.37 ][/tex]

=>  [tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = P(Z <  2.37 ) - P(Z < -2.37 )[/tex]

From the z-table  the probability of  (Z <  2.37 ) and  (Z < -2.37 ) is

  [tex]P(Z <  2.37 ) = 0.9911[/tex]

and

  [tex]P(Z <  - 2.37 ) = 0.0089[/tex]

So

=>[tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) =0.9911-0.0089[/tex]

=>[tex]P( - (0.05 - 0.52 ) <  \^ p <  (0.05 + 0.52 )) = 0.9822 [/tex]

=> [tex]P(| \^ p -  p| < 0.05 ) = 0.9822 [/tex]