contestada

A cheetah can run at a maximum speed 103 km/h and a gazelle can run at a maximum speed of 76.5 km/h. If both animals are running at full speed, with the gazelle 99.3 m ahead, how long before the cheetah catches its prey?

Answer in units of s.


Part 2: The cheetah can maintain its maximum speed for only 7.5 s. What is the minimum distance the gazelle must be ahead of the cheetah to have a chance of escape? (After 7.5 s the speed of cheetah is less than that of the gazelle.)

Answer in units of m.

Respuesta :

Answer:

1

 [tex] t_a  =  13.49 \  s   [/tex]

2

 The distance is   [tex] D = 55.2 \  m  [/tex]    

Explanation:

From the question we are told that

   The maximum speed of the cheetah is  [tex]v =  103 \  km/h =  28.61 \  m/s[/tex]

    The maximum of  gazelle is  [tex]u =  76.5 \  km/h =  21.25 \  m/s[/tex]

     The distance ahead is [tex]d =  99.3 \  m[/tex]

Let  [tex]t_a[/tex] denote the time which the cheetah catches the gazelle

Gnerally the equation representing the distance the cheetah needs to move in order to catch the gazelle is

           [tex] v* t_a = d +  u* t_a [/tex]

=>          [tex] 28.61 t_a = 99.3 +  21.25t_a [/tex]

=>          [tex] 7.36 t_a = 99.3  [/tex]

=>         [tex] t_a  =  13.49 \  s   [/tex]

Now at t =  7.5 s  

             [tex]7.5 v = D+  7.5u [/tex]

=>          [tex] 28.61 * 7.5  = D +  21.25* 7.5  [/tex]

=>          [tex] 7.36 *  7.5 =D  [/tex]

=>         [tex] D = 55.2 \  m  [/tex]        

Hence the for the gazelle to escape the cheetah it must be 55.2 m