Juniper Corp. makes three models of insulated thermos. Juniper has $306,000 in total revenue and total variable costs of $192,780. Its sales mix is given below: Percentage of total sales Thermos A 30 % Thermos B 48 Thermos C 22 Required: 1. Calculate the (overall) weighted-average contribution margin ratio. 2. Determine the total sales revenue Juniper needs to break even if fixed costs are $73,075. 3. Determine the total sales revenue needed to generate a profit of $78,070. 4. Determine the sales revenue from each product needed to generate a profit of $78,070.

Respuesta :

Answer:

Follows are the solution to this question:

Explanation:

In Option 1:

[tex]\to CM \ ratio = \frac{(Sales - variable\ cost)}{variable\ cost}[/tex]

                     [tex]= \frac{(306,000 - 192,780)}{306,000}\\\\= \frac{113,220}{306,000}\\\\= 0.37 \%[/tex]

In Option 2: .  

[tex]\to BEP = \frac{Total \ fixed \ cost}{CM \ ratio}[/tex]

              [tex]= \frac{73,075}{0.37}\\\\=\$ \ 197500[/tex]

In Option 3:

[tex]\to Required \ sales = \frac{(73,075+ 78,070)}{0.37}[/tex]

                             [tex]=\frac{151145}{0.37}\\\\=408500[/tex]

In Option 4:

[tex]\to Sales A = 408500 \times \frac{30}{100} = 1361666.67\\\\\to Sales B = 408500\times \frac{48}{100} = 851041.667\\\\\to Sales C = 408500\times \frac{22}{100} = 1856818.18\\\\[/tex]