Answer:
The likelihood is   [tex]P(p <  \^ p) = 0.066807[/tex]
Step-by-step explanation:
From the question we are told that Â
  The population proportion is p =0.55
  The sample size is  n  =  619 Â
  The sample proportion is  [tex]\^ p =  0.52[/tex]
Generally the mean of the sampling distribution is  [tex]\mu_{x} =  p = 0.55[/tex]
The standard deviation is  [tex]\sigma =  \sqrt{\frac{p(1- p )}{n} }[/tex]
=> Â Â [tex]\sigma = Â \sqrt{\frac{0.55(1- 0.55 )}{619} }[/tex]
=> Â Â [tex]\sigma = Â 0.02[/tex]
Generally the likelihood that  the administration have obtained a sample proportion as low as or lower than it obtained from its survey is mathematically represented as
[tex]P(p < Â \^ p) = Â P(\frac{p- \mu}{\sigma } Â < \frac{ 0.52- 0.55}{0.02 } Â )[/tex]
Generally [tex]\frac{p- \mu}{\sigma }  =  Z(The \  standardized \  value  \  of  \  p)[/tex]
=> Â [tex]P(p < Â \^ p) = Â P(Z <-1.5 Â )[/tex]
From the z-table the probability of (Z <-1.5 Â ) is Â
    [tex]P(Z <-1.5  )  = 0.066807[/tex]
So
   [tex]P(p <  \^ p) = 0.066807[/tex]
Â