Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

tanx = [tex]\frac{sinx}{cosx}[/tex] , sin²x + cos²x = 1, secx = [tex]\frac{1}{cosx}[/tex]

Consider left side

tanAsinA + cosA

= [tex]\frac{sinA}{cosA}[/tex] × sinA + cosA

= [tex]\frac{sin^2A}{cosA}[/tex] + cosA

[tex]\frac{sin^2A+cos^2A}{cosA}[/tex]

= [tex]\frac{1}{cosA}[/tex]

= secA = right side , thus proven