What is the numerical coefficient of the a^4 b^4 term in the expansion of (1/3a^2 - 2b)^6

enter your answer, in the simplest fractional form, in the box​

Respuesta :

Use the binomial theorem:

[tex]\left(\dfrac13a^2-2b\right)^6=\displaystyle\sum_{k=0}^6\binom6k\left(\dfrac13a^2\right)^{6-k}(-2b)^k=\sum_{k=0}^6\binom6k\dfrac{(-6)^k}{729}a^{12-2k}b^k[/tex]

where

[tex]\dbinom nk=\dfrac{n!}{k!(n-k)!}[/tex]

is the binomial coefficient.

We get the ab⁴ term when k = 4, which gives the coefficient

[tex]\dbinom64\dfrac{(-6)^4}{729}=\boxed{\dfrac{80}3}[/tex]