Respuesta :

Answer:

[tex] z = \dfrac{3R}{2xy^2} [/tex]

Step-by-step explanation:

[tex] R = \dfrac{2}{3}xy^2z [/tex]

[tex] \dfrac{2}{3}xy^2z = R [/tex]

[tex] \dfrac{3}{2xy^2} \times \dfrac{2}{3}xy^2z = \dfrac{3}{2xy^2} \times R [/tex]

[tex] z = \dfrac{3R}{2xy^2} [/tex]