Respuesta :
Answer:
37
22
44
66
Step-by-step explanation:
the value of x is 37
the length of segment DG is 22 units
The length of segment AG is 44 units
the length of segment AD is 66 units
took it on edg
hope this helps (:
The length from the vertex to the centroid is twice the length from the
centroid to the midpoint of the opposite side.
- x is 37
- Segment [tex]\overline {DG}[/tex] is 22
- Segment [tex]\overline {GA}[/tex] is 44
- Segment [tex]\overline {AD}[/tex] is 66
Reasons:
The known parameters are;
The centroid of ΔABC = Point G
Segments [tex]\overline {AD}[/tex], [tex]\overline {BE}[/tex], and [tex]\overline {CF}[/tex] are the medians of ΔABC
Length of line segments [tex]\overline {DG}[/tex] = x - 15
Length of line segments [tex]\overline {GA}[/tex] = x + 7
Required:
The value of x, and lengths of the segments of median [tex]\overline {AD}[/tex]
The median is divided at the centroid of the triangle to ratio 2:1
[tex]Length \ of \ line \ segment \ \overline{GA} = \dfrac{2}{3} \times \overline{AD}[/tex]
Therefore;
[tex]\overline{AD} = \mathbf{\dfrac{3}{2} \times \overline{GA}}[/tex]
[tex]Length \ of \ line \ segment \ \overline{DG} = \mathbf{\dfrac{1}{3} \times \overline{AD}}[/tex]
Therefore;
[tex]\overline{AD} = 3\times \overline{DG}[/tex]
Which gives;
[tex]\dfrac{3}{2} \times \overline{GA} = 3\times \overline{DG}[/tex]
Therefore;
[tex]\dfrac{3}{2} \times (x + 7) = 3\times (x - 15)[/tex]
3·x + 21 = 6·x - 90
21 + 90 = 6·x - 3·x
111 = 3·x
3·x = 111
[tex]x = \dfrac{111}{3} = 37[/tex]
x = 37
[tex]\overline {DG}[/tex] = x - 15
The length of line segment [tex]\overline {DG}[/tex] = 37 - 15 = 22
[tex]\overline {GA}[/tex] = x + 7
Length of line segment [tex]\overline {GA}[/tex] = 37 + 7 = 44
[tex]\overline {AD}[/tex] = [tex]\overline {DG}[/tex] + [tex]\overline {GA}[/tex]
Therefore;
Length of line segment [tex]\overline {AD}[/tex] = 22 + 44 = 66
Learn more here:
https://brainly.com/question/7698132
