Given:
Two triangles are congruent, i.e., [tex]\Delta ABC\cong \Delta XYZ[/tex].
To find:
All the measures of both triangle.
Solution:
We have,
[tex]\Delta ABC\cong \Delta XYZ[/tex].
We know that, corresponding parts of congruent triangles are congruent (CPCTC).
[tex]\angle A=\angle X[/tex]
[tex]\angle B=\angle Y=90^\circ[/tex]
[tex]\angle C=\angle Z=37^\circ[/tex]
It triangle ABC,
[tex]\angle A+\angle B+\angle C=180^\circ[/tex] (Angle sum property)
[tex]\angle A+90^\circ+37^\circ=180^\circ[/tex]
[tex]\angle A+127^\circ=180^\circ[/tex]
[tex]\angle A=180^\circ -127^\circ[/tex]
[tex]\angle A=53^\circ[/tex]
So,
[tex]\angle A=\angle C=53^\circ[/tex]
[tex]AB=XY=3\text{ units}[/tex]
[tex]BC=YZ=4\text{ units}[/tex]
[tex]AC=XZ=5\text{ units}[/tex]
Therefore, m∠A = 53˚, m∠B =90˚
, m∠C =37˚
, m∠X = 53˚, m∠Y =90˚
, m∠Z =37˚
, Segment AB = 3 units
, Segment BC = 4 units
, Segment AC = 5 units
, Segment XY = 3 units
, Segment YZ = 4 units
, Segment XZ = 5 units
.