Respuesta :

Answer:

D. [tex] y - 5= 3(x - 1) [/tex]

B. [tex] y = \frac{3}{2}x - 3 [/tex]

Step-by-step explanation:

Problem 1:

Point-slope form equation is given as [tex] y - y_1 = m(x - x_1) [/tex], where, (x1, y1) is a point on the line, and m = slope.

Find the slope of the line of the graph given, using 2 points on the line, points (0, 2) and (1, 5).

[tex] m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 5}{0 - 1} = \frac{-3}{-1} = 3 [/tex]

Substitute (x1, y1) = (1, 5) and m = 3 into [tex] y - y_1 = m(x - x_1) [/tex]

[tex] y - 5= 3(x - 1) [/tex]

The answer is D.

Problem 2:

Slope-intercept equation takes the form: [tex] y = mx + b [/tex], where, m = slope, and b = y-intercept.

Find m and b.

Given, points (−4,−9) and (−2,−6),

[tex] slope(m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-6 -(-9)}{-2 -(-4)} = \frac{3}{2} = \frac{3}{2} [/tex]

Substitute x = -2, y = -6, and m = ³/2 into [tex] y = mx + b [/tex], to find b:

[tex] -6 = \frac{3}{2}(-2) + b [/tex],

Subtract b from both sides

[tex] -6 = -3 + b [/tex]

Add 3 to both sides

[tex] -6 + 3 = b [/tex]

[tex] -3 = b [/tex]

[tex] b = -3 [/tex]

Substitute m = ³/2, b = -3 into [tex] y = mx + b [/tex]

[tex] y = \frac{3}{2}x + (-3) [/tex]

[tex] y = \frac{3}{2}x - 3 [/tex]

The answer is B.