Plot point F so that △ABC ≅ △FGH. Identify a sequence of rigid motions that maps △ABC onto △FGH and use a theorem to complete the explanation of why the triangles are congruent.

Plot point F so that ABC FGH Identify a sequence of rigid motions that maps ABC onto FGH and use a theorem to complete the explanation of why the triangles are class=
Plot point F so that ABC FGH Identify a sequence of rigid motions that maps ABC onto FGH and use a theorem to complete the explanation of why the triangles are class=

Respuesta :

Answer:

Step-by-step explanation:

Point F is plotted at (5, 4)

Translate ΔABC so that point B maps to point G.

B(1, -1) → G(0, 3)  

Rule for the translation,

(x, y) → [x - 1, y + 4]

By this rule,

Point C will map the point,

C(-1, -2) → C'[(-1 - 1), (-2 + 4)]

             → C'(-2, 2)

A(-4, 0) → A'[(-4 - 1), (0 + 4)]

           → A'(-5, 4)

Now reflect these points across y-axis.

Rule for the reflection across y-axis,    

(x, y) → (-x, y)

Points after reflection will be,

A'(-5, 4) → F(5, 4)

B'(0, 3) → G(0, 3)

C'(-2, 2) → H(2, 2)

Distance formula,

d = [tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

AB = [tex]\sqrt{(1+4)^2+(-1-0)^2}[/tex] = [tex]\sqrt{26}[/tex]

BC = [tex]\sqrt{(-2+1)^2+(-1-1)^2}[/tex] = [tex]\sqrt{5}[/tex]

CA = [tex]\sqrt{(-4+1)^2+(-2-0)^2}[/tex] = [tex]\sqrt{13}[/tex]

FG = [tex]\sqrt{(5-0)^2+(4-3)^2} =\sqrt{26}[/tex]

GH = [tex]\sqrt{(2-0)^2+(2-3)^2}=\sqrt{5}[/tex]

HF = [tex]\sqrt{(4-2)^2+(5-2)^2}=\sqrt{13}[/tex]

AB ≅ FG, BC ≅ GH, CA ≅ HF          

By the SSS property Triangle congruence theorem, ΔABC ≅ ΔFGH