contestada

In ΔCDE, \text{m}\angle C = (x-4)^{\circ}m∠C=(x−4) ∘ , \text{m}\angle D = (11x-11)^{\circ}m∠D=(11x−11) ∘ , and \text{m}\angle E = (x+13)^{\circ}m∠E=(x+13) ∘ . Find \text{m}\angle C.m∠C.

Respuesta :

Answer:

The measure of C is 10°

Step-by-step explanation:

In a triangle CDE, its internal angles are given:

C=x-4

D=11x-11

E=x+13

Since the sum of the internal angles of a triangle is 180°:

x-4+11x-11+x+13=180

Simplifying:

13x-2=180

Adding 2:

13x=182

Solving:

x=182/13

x=14°

The measure of the angles is:

C=x-4 =10°

D=11x-11=143°

E=x+13=27°

The measure of C is 10°