Answer:
The velocity is [tex]v_b = 20.17 \ m/s[/tex]
Explanation:
From the question we are told that
  The mass of the ball is  [tex]m = 0.245 \ kg[/tex]
  The radius is  [tex]r =  59.8 \  cm  =  0.598 \ m[/tex]
  The force is  [tex]F =  30.9 \ N[/tex]
  The speed of the ball is  [tex]v = 16.0 \ m/s.[/tex]
Generally the kinetic energy at the top of the circle is mathematically represented as
  [tex]K_t  =  \frac{1}{2} *  m  *  v^2[/tex]
=> [tex]K_t  =  \frac{1}{2} *  0.245  *  16.0 ^2[/tex] Â
=> [tex]K_t  =  31.36 \ J[/tex] Â
Generally the work done by the force applied on the ball from the top to the bottom  is mathematically represented as
    [tex]W =  F *  d[/tex]
Here  d is the length of  a semi - circular arc which is mathematically represented as
    [tex]d =  \pi * r[/tex]
So
   [tex]W =  30.9 *  0.598  [/tex]
   [tex]W = 18.48 \ J [/tex]
Generally the kinetic energy at the bottom is mathematically represented as
   [tex]K_b  =  \frac{1}{2} *  m *  v_b^2[/tex]
=>   [tex]K_b  =  \frac{1}{2} *  0.245  *  v_b^2[/tex]
=>  [tex]K_b  =  0.1225  *  v_b^2[/tex]
From the law of energy conservation
   [tex]K_t +  W  =K_b[/tex]
=> Â Â [tex]31.36+ Â 18.48 = 0.1225 Â * Â v_b^2[/tex]
=> Â Â [tex]v_b = 20.17 \ m/s[/tex]