Use the work shown below to find the simplified product.


StartFraction 25 x squared Over 2 x + 6 EndFraction times StartFraction 2 Over 5 x EndFraction


StartFraction 25 x squared Over 2 (x + 3) EndFraction times StartFraction 2 Over 5 x EndFraction

Respuesta :

Answer:

a. [tex]\frac{5x}{(x+3)}[/tex]

b. [tex]\frac{5x}{(x+3)}[/tex]

Step-by-step explanation:

Given that:

a. [tex](\frac{25x^{2} }{2x+6})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{50x^{2} }{5x(2x+6)}[/tex]

                        = [tex]\frac{50x^{2} }{10x^{2} +30x}[/tex]

                        = [tex]\frac{(50x)x}{(10x+30)x}[/tex]

                        = [tex]\frac{50x}{(10x+30)}[/tex]

                         = [tex]\frac{5x}{(x+3)}[/tex]

b. [tex](\frac{25x^{2} }{2(x+3)})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{50x^{2} }{10x(x+3)}[/tex]

                           = [tex]\frac{5x}{(x+3)}[/tex]

Therefore,

[tex](\frac{25x^{2} }{2x+6})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex](\frac{25x^{2} }{2(x+3)})[/tex] x [tex](\frac{2}{5x})[/tex] = [tex]\frac{5x}{(x+3)}[/tex]