The measure of angle B in a triangle is 4 more than twice the measure of angle A. The measure of angle C is 30 less than 3 times the measure of angle A. Find the measure of each angle.

Respuesta :

Answer:

[tex]A = 34\frac{1}{3}[/tex]

[tex]B = 72\frac{2}{3}[/tex]

[tex]C = 73[/tex]

Step-by-step explanation:

Given

Shape: Triangle

[tex]B = 4 + 2A[/tex]

[tex]C = 3A - 30[/tex]

Required

Solve for A, B and C

Since the shape is a triangle,

[tex]A + B +C = 180[/tex]

Substitute [tex]B = 4 + 2A[/tex] and [tex]C = 3A - 30[/tex] in [tex]A + B +C = 180[/tex]

[tex]A + 4 + 2A + 3A - 30 = 180[/tex]

Collect Like Terms

[tex]A + 2A + 3A = 180 + 30 - 4[/tex]

[tex]6A = 206[/tex]

Solve for A

[tex]A = 206/6[/tex]

[tex]A = 34\frac{1}{3}[/tex]

Substitute [tex]A = 34\frac{1}{3}[/tex] in [tex]B = 4 + 2A[/tex]

[tex]B = 4 + 2 * 34\frac{1}{3}[/tex]

[tex]B = 4 + 2 * \frac{103}{3}[/tex]

[tex]B = 4 + \frac{206}{3}[/tex]

[tex]B = \frac{12 + 206}{3}[/tex]

[tex]B = \frac{218}{3}[/tex]

[tex]B = 72\frac{2}{3}[/tex]

Substitute [tex]A = 34\frac{1}{3}[/tex] in [tex]C = 3A - 30[/tex]

[tex]C = 3 * 34\frac{1}{3} - 30[/tex]

[tex]C = 3 * \frac{103}{3} - 30[/tex]

[tex]C = 103 - 30[/tex]

[tex]C = 73[/tex]