Points W. X, and Y are collinear Point X is between points W X, and Y, are collinear point x is between w and y WX = 3y + 11, WY = 6y - 25, and XY = y + 12. Find WX, XY, and WY.

Respuesta :

Answer:

[tex]WX = 83[/tex]

[tex]WY = 119[/tex]

[tex]XY = 36[/tex]

Step-by-step explanation:

Given

[tex]WX = 3y + 11\\WY = 6y - 25\\XY = y + 12[/tex]

Required

Determine the values of WX, XY and XY

Since X is between W and Y, we have:

[tex]WY = WX + XY[/tex]

[tex]6y - 25 = 3y + 11 + y + 12[/tex]

Collect Like Terms

[tex]6y - 3y - y = 25 + 11 + 12[/tex]

[tex]2y = 48[/tex]

Solve for y

[tex]y = 48/2[/tex]

[tex]y = 24[/tex]

Substitute 24 for y in

[tex]WX = 3y + 11\\WY = 6y - 25\\XY = y + 12[/tex]

[tex]WX = 3 * 24 + 11[/tex]

[tex]WX = 83[/tex]

[tex]WY = 6 * 24 - 25[/tex]

[tex]WY = 119[/tex]

[tex]XY = 24 + 12[/tex]

[tex]XY = 36[/tex]