Answer:
[tex]WX = 83[/tex]
[tex]WY = 119[/tex]
[tex]XY = 36[/tex]
Step-by-step explanation:
Given
[tex]WX = 3y + 11\\WY = 6y - 25\\XY = y + 12[/tex]
Required
Determine the values of WX, XY and XY
Since X is between W and Y, we have:
[tex]WY = WX + XY[/tex]
[tex]6y - 25 = 3y + 11 + y + 12[/tex]
Collect Like Terms
[tex]6y - 3y - y = 25 + 11 + 12[/tex]
[tex]2y = 48[/tex]
Solve for y
[tex]y = 48/2[/tex]
[tex]y = 24[/tex]
Substitute 24 for y in
[tex]WX = 3y + 11\\WY = 6y - 25\\XY = y + 12[/tex]
[tex]WX = 3 * 24 + 11[/tex]
[tex]WX = 83[/tex]
[tex]WY = 6 * 24 - 25[/tex]
[tex]WY = 119[/tex]
[tex]XY = 24 + 12[/tex]
[tex]XY = 36[/tex]