Respuesta :

Answer:

[tex]\angle ABD =42.4^{\circ}[/tex]

Step-by-step explanation:

We are given that Point C is in the interior of ∠ABD

We are also given that ∠ABC ≅ ∠CBD

Now ,

[tex]\angle ABC = (\frac{5}{8}x + 18)\\\angle CBD = (4x)[/tex]

Since we are given that ∠ABC ≅ ∠CBD

So, [tex]\frac{5}{8}x + 18=4x\\4x-\frac{5}{8}x=18\\\frac{32x-5x}{8}=18\\\frac{27x}{8}=18\\x=\frac{18 \times 8}{27}\\x=5.3[/tex]

[tex]\angle CBD = (4x)=4(5.3)=21.2^{\circ}[/tex]

[tex]\angle ABD = \angle CBD+\angle ABC=21.2+21.2=42.4^{\circ}[/tex]

Hence [tex]\angle ABD =42.4^{\circ}[/tex]