Respuesta :
Answer:
q1 (1,-3)
r1 (3,3)
s1 (0,2)
t1 (-2,-1)
Step-by-step explanation:
When a shape is reflected, it must be reflected across a line
The vertices for [tex]\mathbf{rx-axis}[/tex] of qrst are:
- [tex]\mathbf{q'(1,-3)}[/tex]
- [tex]\mathbf{ r'(3,3)}[/tex]
- [tex]\mathbf{ s'(0,2)}[/tex]
- [tex]\mathbf{t'(-2,-1)}[/tex]
The given parameters are:
[tex]\mathbf{q = (1,3)}[/tex]
[tex]\mathbf{r = (3,-3)}[/tex]
[tex]\mathbf{s = (0,-2)}[/tex]
[tex]\mathbf{s = (-2,1)}[/tex]
The transformation rule is given as:
[tex]\mathbf{rx-axis}[/tex]
The above rule means that the vertices are reflected over the x-axis
The rule of the transformation is:
[tex]\mathbf{(x,y) \to (x,-y)}[/tex]
So, we have:
[tex]\mathbf{q(1,3) \to q'(1,-3)}[/tex]
[tex]\mathbf{r(3,-3) \to r'(3,3)}[/tex]
[tex]\mathbf{s(0,-2) \to s'(0,2)}[/tex]
[tex]\mathbf{t(-2,1) \to t'(-2,-1)}[/tex]
Hence, the vertices for [tex]\mathbf{rx-axis}[/tex] of qrst are:
[tex]\mathbf{q'(1,-3)}[/tex]
[tex]\mathbf{ r'(3,3)}[/tex]
[tex]\mathbf{ s'(0,2)}[/tex]
[tex]\mathbf{t'(-2,-1)}[/tex]
Read more about reflections at:
https://brainly.com/question/938117