Respuesta :

Answer:

q1 (1,-3)

r1 (3,3)

s1 (0,2)

t1 (-2,-1)

Step-by-step explanation:

When a shape is reflected, it must be reflected across a line

The vertices for [tex]\mathbf{rx-axis}[/tex] of qrst are:

  • [tex]\mathbf{q'(1,-3)}[/tex]
  • [tex]\mathbf{ r'(3,3)}[/tex]
  • [tex]\mathbf{ s'(0,2)}[/tex]
  • [tex]\mathbf{t'(-2,-1)}[/tex]

The given parameters are:

[tex]\mathbf{q = (1,3)}[/tex]

[tex]\mathbf{r = (3,-3)}[/tex]

[tex]\mathbf{s = (0,-2)}[/tex]

[tex]\mathbf{s = (-2,1)}[/tex]

The transformation rule is given as:

[tex]\mathbf{rx-axis}[/tex]

The above rule means that the vertices are reflected over the x-axis

The rule of the transformation is:

[tex]\mathbf{(x,y) \to (x,-y)}[/tex]

So, we have:

[tex]\mathbf{q(1,3) \to q'(1,-3)}[/tex]

[tex]\mathbf{r(3,-3) \to r'(3,3)}[/tex]

[tex]\mathbf{s(0,-2) \to s'(0,2)}[/tex]

[tex]\mathbf{t(-2,1) \to t'(-2,-1)}[/tex]

Hence, the vertices for [tex]\mathbf{rx-axis}[/tex] of qrst are:

[tex]\mathbf{q'(1,-3)}[/tex]

[tex]\mathbf{ r'(3,3)}[/tex]

[tex]\mathbf{ s'(0,2)}[/tex]

[tex]\mathbf{t'(-2,-1)}[/tex]

Read more about reflections at:

https://brainly.com/question/938117