Respuesta :
Answer:
First, let's write the general transformations:
a) A vertical stretch by a factor of 3.
f(x) ---> 3*f(x)
b) A reflection in the y-axis.
3*f(x) ----> 3*f(-x)
c) A translation of 2 units to the left.
3*f(-x) ----> 3*f(-x + 2)
then we know that:
g(x) = 3*f(-x + 2)
and f(x) = x^2 - x + 1
Then:
g(x) = 3*( (-x + 2)^2 - (-x + 2) + 1)
g(x) = 3*( x^2 - 4*x + 4 +x - 2 + 1) = 3*(x^2 - 3*x + 3)
g(x) = 3*x^2 - 9*x - 9
The required polynomial is [tex]3x^{2} +15x+21[/tex].
The given question solved in the following steps.
- Apply vertical stretch by a factor 3. You get then the polynomial .
[tex]f(x) = 3( x^{2} -x+1)[/tex]
- Reflection in the y-axis is the change of x to (-x).
So, after reflection, the new polynomial is
[tex]q(x) = 3((-x)^{2} - (-x) + 1 )\\q(x) = 3(x^{2} + x +1 )\\q(x) = 3x^{2} +3 x+3[/tex]
- Translation 2 units left is the change of x by (x+2) in the polynomial.
So, the new polynomial g(x)
[tex]g(x) = 3(x+2)^{2} + 3(x+2) + 3\\\\g(x) = 3(x^{2} +4x+4) + 3x + 6 + 3\\g(x) = 3x^{2} + 12x +12 +3x+ 9\\g(x) = 3x^{2} + 15x + 21[/tex]
The required value of g(x) is [tex]3x^{2} +15x+21[/tex].
For more information about rules of graph click the link given below.
https://brainly.com/question/13838647