Respuesta :

Answer:

[tex] x = 18 [/tex]

[tex] y = 5 [/tex]

Step-by-step explanation:

49° + (3x)° = (7x - 23)° (corresponding angles)

[tex] 49 + 3x = 7x - 23 [/tex]

Collect like terms

[tex] 49 + 23 = 7x - 3x [/tex]

[tex] 72 = 4x [/tex]

Divide both sides by 4

[tex] \frac{72}{4} = x [/tex]

[tex] 18 = x [/tex]

[tex] x = 18 [/tex]

(3x)° = (11y - 1)° (corresponding angles)

Plug in the value of x and solve for y

[tex] 3(18) = 11y - 1 [/tex]

[tex] 54 = 11y - 1 [/tex]

Add 1 to both sides

[tex] 54 + 1 = 11y [/tex]

[tex] 55 = 11y [/tex]

Divide both sides by 11

[tex] \frac{55}{11} = y [/tex]

[tex] 5 = y [/tex]

[tex] y = 5 [/tex]