Which numbers complete the blanks when solving the equation cos(x+2pi)= -(square root of 2/2) over the interval [0, 2pi]?

Which numbers complete the blanks when solving the equation cosx2pi square root of 22 over the interval 0 2pi class=

Respuesta :

Answer:

1, 0

Step-by-step explanation:

Let [tex]\cos (x+2\pi) = -\frac{\sqrt{2}}{2}[/tex]. From Trigonometry we remember the following identity:

[tex]\cos (a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b[/tex] (Eq. 1)

Where [tex]a[/tex] and [tex]b[/tex]  are angles measured in radians.

Then, we proceed to expand the given expression:

[tex]\cos x \cdot \cos 2\pi - \sin x \cdot \sin 2\pi = -\frac{\sqrt{2}}{2}[/tex]

[tex]\cos x \cdot 1 - \sin x \cdot 0 = -\frac{\sqrt{2}}{2}[/tex]

[tex]\cos x = -\frac{\sqrt{2}}{2}[/tex]

Therefore, correct answer is "1, 0".

Answer:

A 1;0

Step-by-step explanation: