shima77
contestada

two electric charges q1 and 5q1 are 3cm apart and apply a repulsive force of 0.02N to each other. How many microculons is q1?
Sorry if it's a bit vague, I had to use a translator​

Respuesta :

q(1) = q

[tex] \frac{k.q.5q}{ ({3 \times {10}^{ - 2} })^{2} } = 2 \times {10}^{ - 2} \\ [/tex]

[tex] \frac{9 \times {10}^{9} \times 5 {q}^{2} }{9 \times {10}^{ - 4} } = 2 \times {10}^{ - 2} \\ [/tex]

9s simplify

[tex] \frac{ {10}^{9} \times 5 {q}^{2} }{ {10}^{ - 4} } = 2 \times {10}^{ - 2} \\ [/tex]

Multiply sides by 10^-4

[tex]5 {q}^{2} \times {10}^{9} = 2 \times {10}^{ - 2} \times {10}^{ - 4} [/tex]

[tex]5 {q}^{2} \times {10}^{9} = 2 \times {10}^{ - 6} [/tex]

Divided sides by 10

[tex]5 {q}^{2} = \frac{2 \times {10}^{ - 6} }{ {10}^{9} } \\ [/tex]

[tex]5 {q}^{2} = 2 \times {10}^{ - 6} \times {10}^{ - 9} [/tex]

[tex]5 {q}^{2} = 2 \times {10}^{ - 15} [/tex]

Divided sides 5

[tex] {q}^{2} = \frac{2}{5} \times {10}^{ - 15} \\ [/tex]

[tex] {q}^{2} = \frac{4}{10} \times {10}^{ - 15} \\ [/tex]

[tex] {q}^{2} = 4 \times {10}^{ - 1} \times {10}^{ - 15} [/tex]

[tex] {q}^{2} = 4 \times {10}^{ - 16} [/tex]

[tex]q = \sqrt{4 \times {10}^{ - 16} } [/tex]

[tex]q = 2 \times {10}^{ - 8} [/tex]

[tex]q = 2 \times {10}^{ - 2} \times {10}^{ - 6} [/tex]

[tex]q = 2 \times {10}^{ - 2} \: \: \: μc[/tex]