Answer:
[tex]\mathbf{3[Fe^{3+}+Fe(OH)^{2+}+Fe(OH)_2^+ +Fe_2(OH)_2^{4+}+FeSO_4^+] = 2[FeSO_4^++SO_4^{2-}+HSO_4^-]}[/tex]
Explanation:
The objective is to write the balance for the solution of [tex]\mathbf{Fe_2(SO_4)_3 }[/tex]
Given that the species are:
[tex]\mathbf{ Fe^{3+}, Fe(OH)^{2+}, Fe(OH)^+_2, Fe_2(OH)^{4+}_2, FeSO_4^+ ,SO_4^{2-}, HSO_4^-}[/tex]
Mass Balance states that the amount of species delivered to a solution is equal to the sum of amounts of all forms of that species.
Therefore, as a result of dissociation.
[tex]\mathbf{Fe_2(SO_4)_3 \to 2Fe^{3+} + 3SO_4^{2-} }[/tex], so after balancing 2 moles of [tex]\mathbf{Fe^{3+}}[/tex] and 3 moles of [tex]\mathbf{SO_4^{2-}}[/tex]
The mass balance for the solution can now be computed as follows:
[tex]\mathbf{3[Fe^{3+}+Fe(OH)^{2+}+Fe(OH)_2^+ +Fe_2(OH)_2^{4+}+FeSO_4^+] = 2[FeSO_4^++SO_4^{2-}+HSO_4^-]}[/tex]