Given:
The equation of function is
[tex]y=-19x-56[/tex]
The domain of a linear function is all real numbers x > 1.
To find:
The range of the function.
Solution:
We have,
[tex]y=-19x-56[/tex]
Since, the domain of a linear function is all real numbers x > 1, it means the value of x can be any real number greater than 1.
Here, coefficient of x is -19 which is negative number. It means the value of y is decreasing as x increasing.
So, [tex]y\to -\infty[/tex] as [tex]x\to \infty[/tex].
At x=1,
[tex]y=-19(1)-56[/tex]
[tex]y=-19-56[/tex]
[tex]y=-75[/tex]
It means, for x>1, y<-75.
Therefore, the range of a linear function is all real numbers y < -75.