Respuesta :

Answer:

m∠8 = 39°

Step-by-step explanation:

Given:

m∠3 = (4x−7)°

m∠5 = (6x−81)°

Required:

m∠8?

Solution:

First, find the value of x.

Since, line m is parallel to line n, therefore,

m∠3 = m∠5 (alternate interior angles are congruent)

[tex] 4x - 7 = 6x - 81 [/tex] (substitution)

Collect like terms

[tex] 4x - 6x = 7 - 81 [/tex]

[tex] -2x = -74 [/tex]

Divide both sides by -2

[tex] x = \frac{-74}{-2} [/tex]

[tex] x = 37 [/tex]

Find m∠8:

m∠8 + m∠5 = 180° (linear pair)

m∠8 + (6x - 81)° = 180° (substitution)

Plug in the value of x

m∠8 + (6(37) - 81)° = 180°

m∠8 + (222 - 81)° = 180°

m∠8 + 141° = 180°

Subtract 141 from both sides

m∠8 = 180° - 141°

m∠8 = 39°