Answer:
[tex]9.15\times 10^{13}\ \text{N}[/tex]
Explanation:
[tex]m=\text{Mass of person}=\dfrac{675}{g}=\dfrac{675}{9.8}\ \text{kg}[/tex]
[tex]g=\text{Acceleration due to gravity on Earth}=9.8\ \text{m/s}^2[/tex]
[tex]r=\text{Radius the neutron star}=10\ \text{km}[/tex]
[tex]M=\text{Mass of neutron star}=1.99\times 10^{30}\ \text{kg}[/tex]
[tex]G=\text{Gravitational constant}=6.674\times10^{-11}\ \text{Nm}^2/\text{kg}^2[/tex]
Weight on neutron star would be
[tex]W_n=\dfrac{GmM}{r^2}\\\Rightarrow W_n=\dfrac{6.674\times 10^{-11}\times \dfrac{675}{9.8}\times 1.99\times 10^{30}}{10000^2}\\\Rightarrow W_n=9.15\times 10^{13}\ \text{N}[/tex]
Weight of the person on the neutron star would be [tex]9.15\times 10^{13}\ \text{N}[/tex]