Respuesta :

Answer:

Step-by-step explanation:

From the picture attached,

From ΔABC,

m∠B = 180° - (m∠C + m∠A)

        = 180° - (90° + 32°)

        = 180° - 122°

        = 38°

Now we have to find the trigonometric ratio of BC and AB from ΔABC,

Since, sinθ = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

sin(32°) = [tex]\frac{BC}{AB}[/tex]

[tex]\frac{BC}{AB}=0.53[/tex]

Therefore, ratio of BC and AB represents the "sine of angle A".