in January 2005, the Huygens probe landed on Saturn's moon titan, the only satellite in the solar system with a dense atmosphere. Titan`s diameter is 5150 km, and its mass is 1.35 x 10^23 kg. the probe weighed 3120 n on the earth. what did it weigh on the surface of titan?
a. 298 n
b. 433 n
c. 108
d. 367 n

Respuesta :

Answer:

b. 433 N

Explanation:

From Newton's law of universal gravitation,

F = [tex]\frac{GMm}{r^{2} }[/tex]  ........... 1

where: F is the force of attraction, G is Newton's universal gravitation constant, M is the mass of massive object, m is the mass of the other object and r is the radius.

Also, from Newton's second law,

F = mg ............ 2

Thus,

mg = [tex]\frac{GMm}{r^{2} }[/tex]

g = [tex]\frac{GM}{r^{2} }[/tex]................  3

Equation 3 can be used to determine the gravitational force on Titan.

Given that: G = 6.6743 x [tex]10^{-11}[/tex] [tex]Nm^{2}kg^{-2}[/tex], M (mass of Titan) = 1.35 x 10^23 kg, and

r = [tex]\frac{diameter of Titan}{2}[/tex]

 = [tex]\frac{5150}{2}[/tex]

 = 2575 km

r = 2575 000 m

g = [tex]\frac{(6.6743*10^{-11}*1.35*10^{23} }{(2575 000)^{2} }[/tex]

  = [tex]\frac{9.010305*10^{12} }{6.630625*10^{12} }[/tex]

  = 1.3589

g = 1.36 m/[tex]s^{2}[/tex]

The acceleration due to gravity, g, on Titan's surface is 1.36 m/[tex]s^{2}[/tex].

On the earth,

weight = mass x acceleration due to gravity

3120 = m x 9.81

m = [tex]\frac{3120}{9.81}[/tex]

   = 318.0428135

The mass of the probe is 318 kg.

So that its weight on the surface of Titan = m x g

                                                                    = 318 x 1.36

                                                             = 432.5 N

The weight of the probe on the surface of Titan is 433 N.