Respuesta :

Answer:

6/5

Divergent

Step-by-step explanation:

aₙ = (-6)ⁿ / (n 5ⁿ⁺²)

aₙ₊₁ = (-6)ⁿ⁺¹ / ((n+1) 5ⁿ⁺³)

lim(n→∞)│aₙ₊₁ / aₙ│

lim(n→∞)│[(-6)ⁿ⁺¹ / ((n+1) 5ⁿ⁺³)] / [(-6)ⁿ / (n 5ⁿ⁺²)]│

lim(n→∞)│[(-6)ⁿ⁺¹ / ((n+1) 5ⁿ⁺³)] × [(n 5ⁿ⁺²) / (-6)ⁿ]│

lim(n→∞)│[(-6)ⁿ⁺¹ / (-6)ⁿ] × [(n 5ⁿ⁺²) / ((n+1) 5ⁿ⁺³)]│

lim(n→∞)│-6 × n / (5 (n+1))│

lim(n→∞) (6n / (5n + 5))

6/5

The limit is greater than 1, so the series diverges.