Respuesta :

[tex]( {x}^{2} + 6x + 8)( {x}^{2} + 6x + 13) =0 \\ [/tex]

_________________________________

[tex] {x}^{2} + 6x + 8 = 0 [/tex]

[tex](x + 2)(x + 4) = 0[/tex]

##############################

[tex]x + 2 = 0[/tex]

[tex]x = - 2[/tex]

##############################

[tex]x + 4 = 0[/tex]

[tex]x = - 4[/tex]

_________________________________

[tex] {x}^{2} + 6x + 13 = 0 [/tex]

[tex]∆ = {b}^{2} - 4ac [/tex]

[tex]a = coefficient \: \: of \: \: {x}^{2} = 1 [/tex]

[tex]b = coefficient \: \: of \: \: x = 6[/tex]

[tex]c = the \: \: alone \: \: number \: = 13 \\ [/tex]

Thus ;

[tex]∆ = ({6})^{2} - 4 \times (2) \times (13) [/tex]

[tex]∆ = 36 - 104[/tex]

[tex]∆ = - 68[/tex]

=======================================

Point :

Remember from now on ,

In quadratic functions ;

if :

[tex]∆ > 0[/tex]

The function has two roots

if :

[tex]∆ = 0[/tex]

The function has just one root

if :

[tex]∆ < 0[/tex]

The function doesn't have any root.

=======================================

Thus , ( + 6x + 13 ) doesn't have any root.

So ; ( x = - 2 ) & ( x = - 4 ) are the only roots.

_________________________________

And we're done....♥️♥️♥️♥️♥️

Answer:

c)-2,-4,-3+2i,-3-2i

Step-by-step explanation:

edge2020