Respuesta :

Answer:

∠WRM = 62

Step-by-step explanation:

∠WRM = ∠WRK + ∠KRM

5x - 13 = 2x - 5 + 37          {Combine like terms}

5x - 13 = 2x  + 32             {Add 13 to both sides}

      5x = 2x + 32 + 13

     5x = 2x + 45         {Subtract 2x from both sides}

5x - 2x = 45

        3x = 45             {Divide both sides by 3}

         x = 45/3

x  = 15

∠WRM = 5x - 13

           = 5*15 - 13

         = 75 - 13

∠WRM = 62

Given :-

m∠WRM = 5x - 13

m∠KRW = 2x - 5

m∠KRM = 37°

As m∠KRW and m∠KRM are forming m∠WRM , their sum will be equal to the measure of m∠WRM .

Which means :-

[tex]2x - 5 + 37 = 5x - 13[/tex]

[tex] - 5 + 37 = 5x - 13 - 2x[/tex]

[tex] - 5 + 37 = 3x - 13[/tex]

[tex]32 = 3x - 13[/tex]

[tex]3x = 32 + 13[/tex]

[tex]3x = 45[/tex]

[tex]x = \frac{45}{3} [/tex]

[tex]\color{olive}\implies\color{hotpink}x = 15[/tex]

m∠KRW :-

[tex] = 2 \times 15 - 5[/tex]

[tex] = 30 - 5[/tex]

[tex]\color{olive}\implies \: \color{hotpink}m∠KRW= 25°[/tex]

Given :-

[tex]\color{olive}\implies \: \color{hotpink}m∠KRM = 37°[/tex]

m∠WRM :-

[tex] = 5 \times 15 - 13[/tex]

[tex] = 75 - 13[/tex]

[tex]\color{olive}\implies \:\color{hotpink} m∠WRM = 62° [/tex]

As the sum of m∠KRW and m∠KRM add upto the measure of m∠WRM (25 + 37 = 62) we have found out the correct measure of the angles .

Therefore , the measure of :-

[tex]\color{olive}\implies \:\color{hotpink} m∠WRM = 62° [/tex]