Respuesta :

Given:

Point is [tex]A\left(-\dfrac{1}{4},5\right)[/tex].

Line is [tex]-x+2y=14[/tex].

To find:

Distance from point A to given line.

Solution:

The distance of point [tex](x_0,y_0)[/tex] from line [tex]ax+by+c=0[/tex] is

[tex]d=\dfrac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}[/tex]

Using the above formula, the distance from [tex]A\left(-\dfrac{1}{4},5\right)[/tex] to the line [tex]-x+2y-14=0[/tex] is

[tex]d=\dfrac{|-(-\dfrac{1}{4})+2(5)-14|}{\sqrt{(-1)^2+(2)^2}}[/tex]

[tex]d=\dfrac{0.25+10-14|}{\sqrt{1+4}}[/tex]

[tex]d=\dfrac{|-3.75|}{\sqrt{5}}[/tex]

[tex]d=\dfrac{3.75}{\sqrt{5}}[/tex]

[tex]d=1.677[/tex]

[tex]d\approx 1.7[/tex]

Therefore, the required distance is 1.7 units.

Answer:

Step-by-step explanation:

1.5